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Abstract

A new asymptotic homogenization piezoelastic composite plate model is obtained. Derivation is based on a modified
two-scale asymptotic homogenization technique applied to a rigorously formulated piezoelectric problem for a three-
dimensional thin composite layer of a periodic structure. The obtained model makes it possible to determine both local
fields and the effective properties of piezoelectric plate by means of solution of the obtained three-dimensional local unit
cell problems and a global two-dimensional piezoelastic problem for a homogenized anisotropic plate. It is shown, in
particular that the effective stiffnesses generally depend on the local piezoelectric constants of the material. The general
symmetry properties of the effective stiffnesses and piezoelectric coefficients of the homogenized plate are derived. The
general model is applied to a practically important case of a laminated anisotropic piezoelastic plate, for which the
analytical formulas for the effective stiffnesses, piezoelectric and dielectric coefficients are obtained. Theory is illustrated
by a numerical example of a piezoelectric laminated plate of a specific structure. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The general homogenization models and their applications for the periodic composite and reinforced
structures were developed earlier using the asymptotic homogenization techniques, see Kalamkarov (1987,
1989, 1992), Kalamkarov and Kolpakov (1996, 1997), and Kolpakov (1982). Many problems in the
framework of elasticity and thermoelasticity have been solved using these models. The mathematical
framework of the asymptotic homogenization technique can be found in Bensoussan et al. (1978) and
Sanchez-Palencia (1980). This method is mathematically rigorous, and it enables the prediction of both the
local and overall averaged properties of the composite solid.

The homogenization model of periodically inhomogeneous in planar directions elastic plate has been
first introduced by Duvaut (1976). It should be noted, however, that the direct application of the
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asymptotic homogenization technique to a two-dimensional plate or shell theory will not provide the
satisfactory results if the spatial inhomogeneities of the material vary on a scale comparable with the small
thickness of the three-dimensional solid under study. A modified approach developed by Caillerie (1984)
consisted in applying the two-scale asymptotic homogenization formalism to three-dimensional problem
for a thin inhomogeneous layer. The similar approach was applied by Kohn and Vogelius (1984) to the
problem of bending of a thin homogeneous elastic layer with a rapidly varying thickness, see also Lewinski
(1992).

Present paper is dealing with the piezoelectric problem for a three-dimensional thin composite solid of a
periodic structure on the basis of asymptotic homogenization. Modeling of piezoelectric composites has
become nowadays an important problem with the emerging area of smart structures based in many cases on
the use of piezoelectric actuators and sensors. A survey by Rao and Sunar (1994) has demonstrated the
wide and important applications of piezoelectric materials in many areas of science and engineering. The
use of piezoelectric actuators and sensors as elements of smart structures was investigated by Crawley and
de Luis (1987), Reddy (1999), Ashida and Tauchert (1998), Kalamkarov and Drozdov (1997), Tzou (1993),
Tzou and Bao (1995), Wang and Rogers (1991) and Zhou and Tiersten (1994) among others. A large
number of analytical results has been published, concerning different aspects of piezoelectrical problems,
such as vibrations of plates and shells (Tiersten, 1969; Batra et al., 1996; Librescu et al., 1996, 1997; Ding
et al., 1997); shape control (Koconis et al., 1994a,b); cracks (Pak, 1990). Piezoelectric composite plates and
laminates were analyzed by Lee (1990), Lee and Jiang (1996), Bisegna and Maceri (1996a,b); Sosa (1992)
and Heyliger (1994, 1997). Problems in thermopiezoelasticity with relevance to smart composite structures
were considered by Tauchert et al. (1999). Piezothermoelastic problems for composite plates and beams
have been studied by Blandford et al. (1999) and Jonnalagadda et al. (1993, 1994). Asymptotic approaches
for thin piezoelectric plates were developed by Maugin and Attou (1990) and Cheng et al. (2000).

In the present paper a new asymptotic homogenization piezoelastic composite plate model is obtained.
Derivation is based on a modified two-scale asymptotic homogenization techniques, see Kalamkarov
(1992), applied to a rigorously formulated piezoelectric problem for a three-dimensional thin composite
layer of a periodic structure. This model makes it possible to determine both local fields and the effective
properties. The effective stiffnesses, piezoelectric and dielectric coefficients of the homogenized piezoelastic
plate can be calculated by means of solution of the obtained set of three-dimensional local unit cell
problems. And local mechanical and electrical fields can be determined using the solutions of local unit cell
problems and the solution of the global two-dimensional problem for a homogenized anisotropic plate.

Following this introduction, the basic relations of the three-dimensional piezoelectric problem are for-
mulated in the Section 2. The two-scale asymptotic expansions are introduced in Section 3. The basic re-
lations of the homogenized piezoelastic composite plate model are derived in Sections 4 and 5. Section 6
deals with the basic symmetry properties of the effective coefficients of the homogenized piezoelectric plate.
The general model is applied to a particular case of laminated piezoelastic plate in Section 7. The analytical
formulas for the effective stiffnesses, piezoelectric and dielectric coefficients of a laminated anisotropic pi-
ezoelastic plate are obtained. Theory is illustrated by a numerical example of a three-layer piezoelectric
laminated plate in Section 8. Finally, Section 9 concludes the paper.

2. Problem formulation

Let us consider a thin three-dimensional composite layer of a periodic structure obtained by repeating a
certain small unit cell P, in the Ox|x,-plane, see Fig. 1. Here ¢ is a characteristic dimension of a periodicity
cell, which is assumed to be small as compared with the tangential dimensions of the solid in whole, that is
formalized in the form ¢ — 0. As a result, we obtain a solid of a periodic structure occupying the domain Q,
with the small thickness, see Fig. 1. Note that the shape of lateral surface of the layer S, is determined by the
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Fig. 1. Thin composite solid of a periodic structure and its periodicity cell.

type of surface reinforcement, for example by shape of stiffeners or reinforcing ribs. In particular, this
surface can be plane if surface reinforcements are not used. As ¢ — 0, the three-dimensional domain Q,
converges to a two-dimensional plate-like domain D in the Ox,x,-plane.

We will analyze a piezoelastic problem for the above-described three-dimensional composite solid. The
problem formulation consists of the following equilibrium equations and equation of electrostatics:

oy = e’f; in Q, (2.1)

E;,=0 in Q, (2.2)
where o;; are stresses, E; is electric field.
The boundary conditions are given as follows:

w =0, F'=e(x;,x) on S, (2.3)

Gf]nj = 3_3g,', Ef}’l, =0 on S} (24)

Here w® are displacements, F* is electric potential.

It is assumed that the solid is clamped at the boundary surface S,, see Fig. 1. The second condition in Eq.
(2.3) means that voltage is applied only at the boundary surface S,,.

The local constitutive equations can be written as follows (see e.g., Kalamkarov (1992)):

0% = & (ayu(y) 0u /Ox) — ey (y) OF" /0x;) (2.5)

E° = & (eqq(y) Oul Jox, + &4 (y) OF* /o) (2.6)

Here the elastic coefficients a;;, (y), piezoelectric coefficients e;;(y) and dielectric coefficients ¢, (y) are the
functions in so-called fast variables y = (31,2, 13) where y, = x, /¢, k =1, 2, 3, and all these functions are
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assumed to be periodic in tangential coordinates x;, x,, with the above-defined unit cell P,. The dependency
of these material parameter functions on coordinates xj, x,, x3 within the unit cell P, is defined by the
spatial inhomogeneity of the composite material under consideration. The above assumption for the ma-
terial parameter functions is similar to one that was previously introduced in modeling of thin composite
layer in framework of elasticity and thermoelasticity, see Kalamkarov (1987, 1989, 1992).

The factor 73 in Eq. (2.5) assures that effective bending stiffnesses of the plate will be non-zero, as ¢ — 0.

3. Asymptotic analysis

In this Section the asymptotic expansions are presented for the functions forming the above-formulated
piezoelastic problem (2.1)—(2.6). With the use of two-scale asymptotic expansions, functions in the fast
variables y = x/¢ and in the slow variable X = (x;,x;) € D are introduced, see Kalamkarov (1992) and
Kalamkarov and Kolpakov (1997).

We will study global deformation of the plate as ¢ — 0. In order to do this, we use the following as-
ymptotic expansions:

v = X) +uO(Xy) + o= uOX) + ) (X y) (3.1)
=0
E'=e'ETVX) + EOXy) 4 = EOX) + ) FEY(Xy) (3.2)
=0

a‘fj = Zepa,(f)(xl,xz,y) (3.3)
p=4

E: = ngEfp)(xthay) (34)
p=-2

The functions in the right-hand side of Egs. (3.1)—(3.4) are assumed to be periodic in (y1, y,) with periodicity
cell 7, where T is a projection of the three-dimensional unit cell P, = {y = x/¢: x € P,} onto the Oy, ;-
plane, see Fig. 1.

Note that the above expansions (3.1) and (3.3) are different from the expansions used earlier in Caillerie
(1984) and Galka et al. (1992). The expansion for the displacements (3.1) is starting with the term of the
order of ¢~!. The expansion for stresses (3.3) is starting with the term of the order of £ in accordance with
the expansion for the displacements and the local constitutive equations (2.5).

The following rule of differentiation is assumed for a function f(X,y) in the arguments X = (x,x,) and
y = (71,)2,3), such as in the right-hand sides of Eq. (3.1):

af'/a)Q = 871fa3y7 af/axoc = 871]}0@/ +f7xx (O( = 1) 2) (35)

Here and in the sequel all Latin indices assume values 1, 2, 3 and all Greek indices assume values 1, 2; ,ox
denotes 0/0x, and, jy denotes 0/0y;; d,3 = 0.

Substituting expansions (3.1)—(3.4) into the local constitutive equations (2.5) and (2.6) and representing
the derivatives of the test function in accordance with Eq. (3.5), we obtain

S el =30 anu s, + ¢ ap (g, — e (VFL — e ()FL | (3.6)

p=—4 s=—1
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SOFED = ewa WVl + o ewul), + e (VFS + & ey (3)FS) (3.7)

p=-2 s=—1

Equatmg the terms with the same powers of ¢ in Egs. (3.6) and (3.7), and taking into account that u-! and
1 do not depend on y, we obtain

e 0t = apa (V) + ag(Y)u), — ey (NFLY — e (v)FL ] (3.8)
_ _ 0 1 1
67103 = (Y) U + ag(¥)uy), — e (V)F) — e (¥)F)] (3.9)
and so on.
_ -1 -1 0 — 0
e B = eqa(y)ul)) + ean(¥)up), + en(FLY + ey (y)FY)] (3.10)
e B = eun(y)upn, + eV, + (Y)Y + ay(y)Fy)| (3.11)
and so on.

4. Equations of balance and boundary conditions for the two-dimensional plate

Substituting expansions (3.3) and (3.4) into Eqgs. (2.1) and (2.2), and equating the terms with identical
powers of &, we obtain

@) 1) _ . (3 (4 _ o

Wy—|-0”xm =0 forp=-4,-2,...; Oiijy 0o = fi NP 4.1
on;=0 forp=—4,-2,...; a;'n;=g onS (4.2)
ER +EZD =0 inp forp=—1,0 (4.3)
Ef‘”)n,»:() onS forp=-1,0,... (4.4)

Here S is the lateral surface of the periodicity cell Py, see Fig. 1.
Averaging Eqs. (4.1) and (4.2) as well as Eq. (4.1) multiplied by ys, and taking into account that (f;,) = 0
for any periodic in y;, y, function, and having normal derivative equal to zero on S, we obtain the following

equations for force resultants N,-g”) = (af}” )>, moment resultants Mg) = —(a(;;) v3) and averaged electric field
Ef) = <E<”>> (ij = 1,2.3; 8 = 1,2);
zﬁﬁx 0 b= _4a _23 S ]Vz(/;[?g = <-fl> + <gl> (45)
3/; ﬁx = (f3) +(g3) (4.6)
Mif! = Ng =0, (4.7)
ﬁﬁx_o r=-10, (4.8)
Here

<->:(measr)*‘/})(-)dy and <->s:(measr)*l/s(-)dy
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are the average values over the periodicity cell P, and its lateral surface S.
The following relations take place as ¢ — 0

/Q Xx/e)dx JRGLSE / S xe)dx [inmax

Substituting the expansions (3.1) and (3.2) into the original boundary conditions (2.3) and (2.4) and
equating the terms with the same powers of ¢, we obtain

ub =0, k=-1,0,...; EW=0 k=-11,...; EW = ¢(X) ondD (4.9)

5. Constitutive relations for the two-dimensional homogenized plate model

From Egs. (4.1) and (4.2), for p = —4, and Eqgs. (4.3) and (4.4) for p = —1 we obtain the following
equations:

(azy’kl(Y)uz(fz)y — ewFl) + Q(¥)uj ) — em-,-Eg;”) =0 inp (5.1)

JY

(eikl (y)uf}y + SUFJ(S) + eim(Y)M;(f;i) + SmF;l)) =0 inPp (5.2)

’ Jy

with the boundary conditions

(aijk/(Y)ul(c?;}’ - eki,-Fig) + azjka()’)”i;}c) - emF,i;U)”j =0 onS (5.3)
(eikl(y)ul(c(,)l)y +ayFl) + e (¥)uj e + emEi;”)nj =0 onS§ (5.4)

To solve Egs. (5.1)—(5.4), we introduce the set of so-called local unit cell problems. The unit cell problem
corresponding to average deformation 9,,0,, is the following:

(asm (N = €@ + an(y)) =0 in P
JY (55)
(ew YNz + 8,00 + ena(y)) =0 inP

Y

with boundary conditions

(a,«jk;(y)N%;f — ekijQ?g’,“ =+ a,-j,,w(y))nj =0 onS

(5.6)
(efk/(Y)Ng,";; + e, @0 + e,-m(y))n,— =0 onS§
The unit cell problem corresponding to average electric field d;, is the following:
(aijkl(y)Nlily — e P, — eoa'j) =0 inAh
Jy (5.7)
(eikl(y)N,:[y + 8,']@3}, + 81’0() = 0 in P]
' JY

with boundary conditions
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(al'jk[(y)Nlily — ekijdj?(ky — em'j)nj =0 onS

(5.8)

In the analysis of homogenized plate model the possibility of finding an exact solution of the unit cell
problem plays an important role, see Kalamkarov (1992) for the elastic case. In the piezoelastic case under
consideration we can find an exact solution of unit cell problems (5.5) and (5.6) for £ = 3. This solution can
be written as follows:

N = —yie,, O =0 (5.9)

The solution (5.9) can be verified by substituting formula (5.9) into Eqgs. (5.5) and (5.6) and taking into
account that a;;,3(y) = a;3,(y) and e;,3(y) = en.(y).

Using Eq. (5.9), we can obtain the solution of the problem (5.1)—(5.4) in the following form:

u® = —ye,ul ) (X) + N (y)u,) (X) = N*(y)FL. D (X) + V(X) (5.10)

FO qﬁ“(y)F )(X) + O(X) (5.11)
From Egs. (3.8), (3.10) and (5.10) and (5.11) we obtain

o = (ari/a/f(Y) + aiikl(Y)Ng{;;) ”ij;;? + (az:fkl(Y)NZ,zy — ey + eki/‘ljl‘»)ff&; K (5.12)

£ = (enp0) + e WINI Y+ (o 9, ) P 513)
Averaging Egs. (5.12) and (5.13), we obtain

]vl'<j_4) Alﬂﬂuo/ [fx + E:szo(; (514)

E; " = Byt + B (5.15)
where

Aijap = (ap(y) + au (VN By = (agu(Y)NG, — eqj + ex; @) (5.16)

;= {ewp(y) +en (N B = (o + 6597

Relation (5.16) provide formulas for calculation of effective elastic and piezoelectric constants of the two-
dimensional homogenized plate. It is interesting to note that as it is seen from Eq. (5.16) the effective elastic
constants A;;,; depend on solution N%* of the piezoelectric unit cell problems (5.5) and (5.6). As a result,
these elastic constants depend on the local piezoelectric constants.

Solution of Eq. (4.5) for p = —4, Eq. (4.7) for p = —1 with Eqgs. (5.14) and (5.15) and boundary con-
ditions (4.8) for k = —1is

—-1) — O; Fx(_l) — 0
Therefore, Egs. (5.10) and (5.11) can be represented as follows:
u® = —pre,ul ) (X) + V(X) (5.17)

FO = 0(X) (5.18)
It follows from Eq. (5.13) that a,(f“) =0.
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Substituting Egs. (5.17) and (5.18) into Eqgs. (3.9) and (3.11), we obtain

-3 1 -1 1 1
0l = ayu(Y)ug), — @ (V) 930S oupe + @i (V) Ve — @i (¥) — ufl), — exiFyy) — €40 e (5.19)

E = 6yl + 600 e — expa (V)3 + € (3) Vg + (¥} (5.20)
Solution of problems (4.1) and (4.2) for p = —3, and Eqgs. (4.3) and (4.4) for p = —1 has the following form:

= NP (y) V,u (X) + N (y)uty 5, (X) + N (1) 0. (X) + W(X) (5:21)

FO = &(y)0 5 (X) + 8" (y) Ve (X) + " (y)ur 1 (X) + 1(X) (5.22)

where (N'™ ®'%) is a solution of the following unit cell problem corresponding to bending of a plate:

(ai/k/(Y)N}ﬁ; — e O — az:im(Y)YS) =0 inA
& (5.23)
(eikl( IN — &y @0 — em(y),w) =0 inPA

SV

with boundary conditions

(aijkl( )Nk”[l;C kqu)l]gx - ljnloc(Y)y3)nj =0 onS

] 1 (5.24)
(en(¥INGE: = 803" = eu(y) ) =0 on S
Substituting Egs. (5.21) and (5.22) into Egs. (5.19) and (5.20), we obtain
01y = i (YYNTE ) Vo (X) - 0 (VNG W)t 5 (X) + 0 (VNG 1, (1) s (X)
- aijﬁl(y)y3ug_a(:c)/}x + @i (¥) Varpr — ekij()’)‘piy(Y)@,m(X) - ekij(Y)‘I’?sz(Y)Va,ﬁx(X)
— e @ (V) (X) = €3 (¥) O (5.25)
E = o5(y) %, ()0 u(X) + e (V)OTL () Vo (X) + a5 () O (¥)uts 1 (X) + 6,0
= eupa (V)35 + €35 () Vg €t (N (0) Ve (X) -+ eaa (NG5 (X)
+ e (Y)N; 1,(¥) O o (X) (5.26)
Averaging Egs. (5.25) and (5.26), we obtain after some transformation
N = (N ) + aypaly) = e (D% (1)) Vo (X) + (i (INILY) = @i (s
— e @) Yl (X) + (@ (¥INE,(3) = (V)P (3) = €y (¥) ) O.n(X) (5.27)
E = (0O (y) + eipa(y) + erWNILW) ) VageX) + (e )P 3) = eily)ys
o+ en (VNI Yl b (X) + (a5 ()95, () + s + ean(¥ING, (¥) )0 e(X) (5.28)

Multiplying Eq. (5.25) by (—)3) and averaging, we obtain
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My = = (s (@ ONEL) + agaly) = e (MOEW) ) ) Vape(X)
= (o (@ NELY) = aipa(¥)s = e @5 () Yok 1, (X)
= (s (@ 0)VE ,(9) = e (¥) Py (3) — €y (¥)) ) ©.x(X) (5.29)

The constitutive relations (5.27)—(5.29) can be written as follows (for ij = y¢ in Egs. (5.27) and (5.29) and
i=1yin Eq. (5.28), N,y = N}, and M,; = MG

70
Nyg = A, Vipe + Al th e + Els© o
E E@ﬁnﬁf+E;ﬂﬁmm'FEa@yx (5.30)

Mys = Ay, Vape + A M% ,ocﬁx +E50 o
where

At:;;; = << — 1) (( INCAW) + (= 1) a3} — e WP ) )
< a3 (Y)NG 1, (¥) = €ro (¥) @7, (¥) — s
< VPELY) + ea(y) + eua( kolzm

Elty = (sx (0O ) — ey + e (NI

El(')", = —<J/3 (aya‘k/ (VN (Y) = ews(¥) P, — em()’)) >7 v, =01

E, = <F,](y)45 (Y) + &u + erkl(y)NZ,ly(y)>

The boundary conditions are obtained by substituting Egs. (5.17) and (5.18) into Eq. (4.8) for £k = 0. These
are

(5.31)

v,X)=0, iV X)=u{Vn,(X)=0, E© =¢X) ondD, a=1,2 (5.32)

Here n,(x = 1,2) is a normal vector to oD.

The above obtained equations (5.30) represent constitutive relations of the two-dimensional homoge-
nized plate model. The coefficients in these relations given by Eq. (5.31) are the effective stiffnesses and
effective piezoelectric and dielectric coefficients of the homogenized plate. Egs. (4.6) and (4.7) with p = -2
represent the equilibrium equations. It is possible to eliminate the shearing forces N3</ﬁ3)x as it is done in the
classical plate theory. Relations (5.32) represent the boundary conditions. As a result, we obtained a closed-
form problem for two-dimensional homogenized plate. It is important to note that not only effective
properties, but also local mechanical and electrical fields can be determined using the above-derived ho-
mogenized piezoelectric plate model. These local fields can be calculated by means of the formulas (5.25)
and (5.26) as soon as the two-dimensional homogenized problem is solved.

6. Symmetry of the effective coefficients of the homogenized piezoelastic plate

Material constants of a piezoelectric material have certain properties of symmetry or anti-symmetry.
Namely, we have —ey; in Eq. (2.5) and e, in Eq. (2.6). It has been shown that analog of this symmetry
takes place for homogenized three-dimensional composite material, see Kalamkarov (1992). The governing



6036 A.L. Kalamkarov, A.G. Kolpakov | International Journal of Solids and Structures 38 (2001) 6027-6044

equations for the homogenized piezoelastic plate are different because they also include the bending stiff-
nesses and curvatures. Let us examine now the symmetry properties of the effective piezoelectric coefficients
of the homogenized plane model.

Multiplying the first equation from Eq. (5.5) by N/, and the second by @7, and integrating by parts over
the unit cell P;, taking into account boundary conditions (5.6) and periodicity conditions, and subtracting
the obtained equations, we get

<aijkl(Y)N2§§NZ/y - ekijq’?/g ﬁNl/jv + aijfkﬁ(y)y;]vz?ijy - elkl(y)ngﬁi@?;y - gl'jq)f‘)/‘l;aq)?/iy — e (Y)13 dj:’iy)> =0,

y=0,1 (6.1)

Multiplying the first equation from Eq. (5.7) by Nio“ﬂ , second by ®”* and integrating by parts over the
unit cell Py, taking into account boundary conditions (5.8) and periodicity conditions, and subtracting the
obtained equations, we get

<a’¢”"(y)N ,f}lny.’jf — e P NP — e NJ — ey (Y)N;Z,zyq)gl;j + 81:/_@?'”(1)2’;“ + Sirq)gl;a» =0 (6.2)

Joyt iy ijy
Taking into account symmetry of a;;; and ¢; in indices i and j, we obtain from Eqs. (6.1) and (6.2)

(aup (V)N = eop(¥) P, ) = (NI + 2,007 ) (63)

In accordance with Eq. (5.31) for effective coefficients of homogenized plate,

By = (au(¥)NZ, (¥) — e (9P, (5) — eaa(y)) (64)

ES = (es WO (¥) + euply) + e (WNYEY) (6.5)
Taking into account symmetry of a;3; and ¢; in indices i and j, we obtain from Egs. (6.3)—(6.5) the following
anti-symmetry relation for the effective in-plane piezoelectric coefficients:

s oo
This relation is analogous to the anti-symmetry property e,; = —e;; for piezoelectric constants in Eqgs. (2.5)
and (2.6).

From the unit cell problems (5.7) and (5.8) and (5.23) and (5.24) follows an analog of formula (6.3)
which can be written as

(13(@p¥INL, = eop) ) ) = (NI + 2,007 ) (6.6)

In accordance with Eq. (5.31) for the effective coefficients of homogenized plate

£ = — (3N (1) ~ )Pl (¥) — eas(y))) (67)
Eo]:& = <8xj(Y)(D,ljia (Y) — oo (Y)J/% + eozkl(y)NllcVZ;(Y>> (68)

Taking into account symmetry of a;3; and ¢; in indices i and j, we obtain from Egs. (6.6)—(6.8) the following
anti-symmetry relation for the effective in-plane piezoelectric coefficients:

Im __ le
Ew;é - _Ealjé
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Using the above-obtained relations, the constitutive relations of the homogenized plate (5.30) can be
written as follows:

-1
Nyci = A?()‘m/; Vat,ﬂx + A;.dlljug,w)ﬁgx + an(s @,wc

_ gl 2 (=1 1
M’fi - Aydat/i Vocﬁx + Aﬂ,‘daljulaxﬁx + Eaéa@ﬁ’-’f (69)
0) _ 1 (=1)
ES )= - E‘XﬁV V;:ﬂx - Eoc/i}rulwcﬂx + E“r@ﬂ
where
n e 1 Im le
ET»’(; = Ew/é = _Eocﬂy’ an& = qu'{i = _Ew,*é

The effective coefficients E,,; and E, ; can be calculated using any of the appropriate formulas given in Eq.
(5.31).

In a similar manner, one can derive the following symmetry relation for the effective stiffnesses of the
homogenized plate:

A?{;lﬂ = A}ét(;i
It is analogous to symmetry relation obtained earlier for the plates in the case of elastic problem, see
Kalamkarov (1992).

It is interesting to compare the obtained piezoelectric and the elastic homogenized problems. The ho-
mogenized equilibrium equations and the boundary conditions (see Section 4) are similar for both piezo-
electric and elastic problems. Let us compare the constitutive relations. If e;; =0, then the unit cell
problems (5.5) and (5.23) decouple. They take forms of decoupled elasticity unit cell problem with respect
to the functions N*#*, (see Kalamkarov (1992)) and electrostatics unit cell problem with respect to the
function @*. The functions ®**#(y) = ®'*(y) = 0. As a result we obtain two decoupled two-dimensional
problems: two-dimensional elastic plate model (which is similar to one presented in Kalamkarov (1992))
and two-dimensional model for a thin dielectric layer. The constitutive equations of the elastic plate are
given by the first two equations from Eq. (6.9) and the constitutive relations for the dielectric layer are given
by the third equation from Eq. (6.9). For both the models E;; = E, ; = 0.

7. Anisotropic laminated piezoelectric plate

The above-obtained asymptotic homogenization piezoelastic plate model has a general character. It can
be applied to the analysis of global and local deformation of different types of piezoelectric composite and
reinforced plates. The type of reinforcement will define the shape of the surface S., and the type of a
composite material inhomogeneity will define the material parameter functions a;,(y), ex;(y) and e, (y). The
local unit cell problems can be solved by means of the appropriate analytical or numerical techniques. Let
us consider now a laminated plate as a practically important type of a composite piezoelastic plate. In the
case of laminated plate all the material characteristics are functions in only one variable y; and surface S; is
plane. In this case P, = [0, 1] and the unit cell problems (5.5) and (5.23) can be written as follows:

(aims (173N} — e33D” + aisp, (v3) 14 ), =0

i VI \/ : (71)
(e3s(3)N) + e330" + e;3,(33)y3) =0 in [0,1]

with the corresponding boundary conditions obtained from Eqgs. (5.6) and (5.24); v =10, 1. Here prime
denotes a derivative in y;. In this section for simplicity we omit indices fo for N} and @".

The problem (7.1) represents four ordinary differential equations with respect to four unknown
functions. Consider the case a3 =0 for i #k and a5, =0, &3,3 = 0. In this case N) =N, =0 and
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Eq. (7.1) is reduced to two differential equations with respect to functions N} and ®". Integrating Eq. (7.1),
we obtain

azz3(13)NY — €33 (13) @ + azap (13)03 = 0, e333(13)NY + £33(03) D" + e3p,(33)y3 = 0 (7.2)

Solution of Eq. (7.2) is the following:

Ny = —esp,(13)y3e333 (13) /A(r3) — azzpa(v3)y3e33(v3) /A(33)

8" = —espa(03)assss(05)/A3) — asspals Whesss(5)/AG3) 73)
where A()’,%) = 613333()’3)833(}’3) + es33 (){z))z- Then
Ny = (—assp(13)33(13) — eapa(13)e333(33))y3/A(3) (7.4)

Q" = (—esp,(13)azs33(v3) + aszpa(13)e333(13)) 03 /A(3)

In the case under consideration the formula (5.31) for A:L’;} takes the form:

Ay = <( — D)% (@533 (5)N3 + (= 1) ayopa(33)y5 — €3ws‘15w)>

Substituting Eq. (7.4) into this formula, we obtain the following formula for the effective stiffnesses of two-
dimensional homogenized plate:

+ 63}'5a33lfo¢e333) /A> .

v AV vp ntv_ v4p
Ayéz/} = <( - 1) V3 ayﬁacﬂ> + <( - 1) 3 ( — Ay533A3360633 — Ay533€342€333 — €3;5€35.3333

In Eq. (7.5) and in the sequel the argument y; may be omitted for simplicity, i.e.,

A = A(y3); esss = esss()3), ete.

In the similar way we can solve the unit cell problems (5.7) and (5.8). Eq. (5.7) under above formulated
conditions for local constants takes the form (we omit index « for Nj and @' for simplicity)

(a3333(13)N; — €333(33) D — €,33(13)) =0, (es3(13)N; + e33(13) @ + &3:(33)) =0 (7.6)
Eq. (7.6) yields

a3 (13)N; — 3 (03) @' — e,33(03) =0, e333(13)N; + 633(03) D + 83, (3) =0 (7.7)
We obtain from Eq. (7.7)

!
N; = euae33/A — e3,0333/A

7.8
P = 61336333/A - 83aa3333/A ( )

In the case under consideration the formula for the effective piezoelectric coefficient Ei:”b from Eq. (5.31) can
be written as follows:

Ejy = <J’§(“>'533(Y3)N3 (053) — €35 (13) 0" (13) — ems ()/3))>

Substituting Eq. (7.8) into this formula, we obtain the following formula for the effective piezoelectric
coefficients of two-dimensional homogenized plate:

Eimg = —<y§€a5y> + <y% (ay533€330833 /A — ay533€33383,/ A + az333€3,563, /A + 6376@333633a/A)> (7.9)
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In the considered case, formula for the effective dielectric coefficients E., from Eq. (5.31) can be written as
follows:

Epx = (5202)8" () + 6+ 0N (1) )

Substituting Eq. (7.8) into this formula, we obtain the following formula for the effective dielectric coef-
ficients of two-dimensional homogenized plate:

an = <€y33€33c4833/4‘ - €y3383ae333/4‘ - 8;‘3831513333/4‘ - 8;v3€a33€333/4‘> (7~10)

8. Numerical example: piezoelectric laminated plate

In this section we will use the above-obtained general relations to calculate effective properties of a
laminated piezoelectric plate of a specific structure. Let us consider a symmetric laminated plate of an
overall thickness # = 0.01 m, formed from the following three layers: piezoelectric layer with 10% of overall
thickness + elastic (passive) layer of 80% overall thickness + another piezoelectric layer with 10% of overall
thickness, see Fig. 2. We will also assume that all layers are made of isotropic and homogeneous materials,
and both piezoelectric layers are made of the same material.

Let us calculate the effective bending stiffness 43,,, given by Eq. (7.5). It was shown in the above Sections
5 and 6 that the effective stiffnesses of homogenized piezoelastic plate generally depend on the local pi-
ezoelectric constants, see Eqs. (5.16) and (7.5). In order to evaluate this dependence we will assume in the
considering example that no electric field is applied, i.e., ¢(X) = 0. The dependence of the effective bending
stiffness 4%,,, on local piezoelectric constants will be due only to a piezoelectric effect in bending defor-
mation.

Material constants from the local constitutive relations (2.5) and (2.6) are given as follows:

a1y = a3z = (1 — V)E/((l + V)(l — 2\))), azy = VE/((I + V)(l — 2\)))
€ijk = Qjmn B (IN plezoelectric layers),  f,,.x = BOmdu(here no summation in k)

8,‘] = 85[1'

We will distinguish material properties of the upper and lower piezoelectric layers by subscript 1, and the
properties of the middle elastic layer by subscript 2.

Plots of the effective bending stiffness 43,,, calculated according to Eq. (7.5) vs. piezoelectric constant f3;
are shown in Fig. 3 for five different material compositions. As follows from this figure, the effective
bending stiffness depends indeed on the piezoelectric constant 1. This dependence is evident in case (1), it is
weaker in cases (3) and (5), and it can be neglected in cases (2) and (4) in which the dielectric constant of the
piezoelectric layer ¢ is much larger than the dielectric constant of the passive elastic layer &. In the pi-
ezoelectric composites used nowadays these conditions are commonly satisfied, and therefore for these

Piezoelectric layer

Elastic layer

Piezoelectric layer

Fig. 2. Three-layer piezoelectric laminated plate.
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Fig. 3. Effective bending stiffness 43,;, of the laminated piezoelastic plate shown in Fig. 2, calculated according to Eq. (7.5) vs. pi-
ezoelectric constant f; for the following material compositions: (1) E; = 30 GPa, v; = 0.4, ¢ = 1.0 x 10~° F/m, E; = 10 GPa, v, = 0.3,
& =1.0 x 1077F/m, (2) E; =30 GPa, v; =04, & = 1.0 x 107¢ F/m, E, = 10 GPa, v, = 0.3, &, = 1.0 x 10~ F/m, (3) E; = 10 GPa,
v =04, ¢ =1.0x 107 F/m, E, =30 GPa, v, = 0.3, &, = 1.0 x 10~ F/m, (4) £, = 10 GPa, v; = 0.4, & = 1.0 x 107® F/m, E, = 30
GPa, v, =03, & =1.0x 10" F/m, (5) E, =10 GPa, v, =04, ¢, = 1.0 x 10~ F/m, E, = 10 GPa, v, = 0.3, &, = 1.0 x 10~° F/m.
Material properties of the upper and lower piezoelectric layers (see Fig. 2) have subscript 1, and properties of the middle elastic layer
have the subscript 2, overall plate thickness # = 0.01 m, , = 0 in all cases.

materials the dependence of the effective stiffnesses on the piezoelectric constant may be neglected. In this
case the following simplified formula can be used instead of Eq. (7.5):

Al = (B0 /(1= (1)) (8.1)

Another approximation can be obtained using the following formula:
Afy =AY h /12 (8.2)

where £ is the thickness of a laminated plate. Relation (8.2) is analogous to a formula which relates the
bending and in-plane stiffnesses for homogeneous elastic plates. Note that this formula is valid for lami-
nated plates formed by a large number of layers, see Kolpakov (1982). In the piezoelastic case formula (8.2)
will provide dependence on f; through 4Y,,, calculated using Eq. (7.5).

Plots in Figs. 4 and 5 compare results for effective bending stiffness 47,,, calculated in accordance with
formulas (7.5), (8.1) and (8.2) vs. piezoelectric constant f5;. Difference in cases considered in these two
figures is only in the values of Poisson’s ratio v, of the piezoelastic layer: in the case of Fig. 4, v = 0.40, and
in the case of Fig. 5, vi = 0.47. Comparison of these figures demonstrates the influence of the value of
Poisson’s ratio of the piezoelastic material v;. Difference between results obtained using formulas (7.5) and
(8.1) grows as v; grows closer to the value of 0.5. For smaller value of Poisson’s ratio v; the results of Egs.
(7.5) and (8.1) are getting closer. It is also seen from Figs. 4 and 5 that results of formula (8.2) are not
satisfactory for the three-layer laminated plate under consideration.

Fig. 6 shows dependencies of the effective bending stiffness 43, calculated in accordance with formulas
(7.5), (8.1) and (8.2) on larger values of piezoelectric constant f3;. It is seen from this figure that as f; grows
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Fig. 4. Comparison of values of the effective bending stiffness 43,;, of the laminated piezoelastic plate shown in Fig. 2, calculated
according to Egs. (7.5), (8.1) and (8.2) vs. piezoelectric constant f5; for the following material composition: £; = 30 GPa, v; = 0.45,
e =10x10"° F/m, E, =10 GPa, v, = 0.3, &, = 1.0 x 1077 F/m.
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Fig. 5. Comparison of values of the effective bending stiffness 43,;, of the laminated piezoelastic plate shown in Fig. 2, calculated

according to Egs. (7.5), (8.1) and (8.2) vs. piezoelectric constant f§; for the following material composition: £; = 30 GPa, v; = 0.47,
& =10x10"° F/m, E, =10 GPa, v, = 0.3, &, = 1.0 x 1077 F/m.

the results of Egs. (7.5) and (8.2) tend to constant values. These constant limits are achieved for f; ap-
proaching 0.4. This corresponds to piezoelastic deformation of about 40%, which is certainly too large for a
linear problem. So, in practice, the effective bending stiffness will not reach a limit value.
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Fig. 6. Effective bending stiffness 43,,, of the laminated piezoelastic plate shown in Fig. 2, calculated in accordance with formulas (7.5),
(8.1) and (8.2) for larger values of piezoelectric constant f3;. Material composition: E; = 30 GPa, v; = 0.40, &; = 1.0 x 10™° F/m,
E, =10 GPa, v, = 0.3, &, = 1.0 x 1077 F/m.

In the considered case Ej(;,’g = 0 due to the symmetry of the plate. As a result the elastic and the electric
problems will decouple, and we have E,, = (&,,).

9. Conclusions

A new asymptotic homogenization piezoelastic composite plate model is obtained. Consideration is
based on application of a modified two-scale asymptotic homogenization technique applied to a rigorously
formulated piezoelectric problem for a three-dimensional thin composite solid of a periodic structure. The
set of three-dimensional local unit cell problems, the constitutive relations and the governing equations for
the homogenized anisotropic piezoelastic plate are derived. The obtained piezoelastic plate model makes it
possible to determine both local mechanical and electrical fields, as well as the effective elastic, piezoelectric
and dielectric properties, by means of solution of three-dimensional local unit cell problems and a global
two-dimensional piezoelectric problem for a homogenized anisotropic plate. It is shown, in particular that
the effective stiffnesses of the homogenized piezoelastic plate generally depend on the local piezoelectric
constants of the material. This dependence is evaluated by a numerical example of a laminated piezoelastic
plate. The general symmetry properties of the effective stiffnesses and piezoelectric coefficients of homo-
genized plate are derived. The general model is applied to a practically important case of a laminated
anisotropic piezoelastic plate, for which the analytical formulas for the effective stiffnesses, piezoelectric and
dielectric coefficients are obtained. Theory is illustrated by a numerical example of a three-layer piezoelastic
laminated plate. In this example, the upper and lower layers are piezoelectric, while the middle layer is
passive elastic. It is shown that the dependence of the calculated effective bending stiffness on the local
piezoelectric constant of the material can be neglected in cases when the dielectric constant of the piezo-
electric layers is much larger than the dielectric constant of the passive elastic layer. In this case a simplified
formula for the effective bending stiffness is obtained. It is shown that this simplified formula provides
satisfactory results for the effective bending stiffness when the value of Poisson’s ratio of the piezoelectric
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material is relatively small. But for larger values of this Poisson’s ratio closer to 0.5, the error of the
simplified formula grows.
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